

Sixth Semester B.E. Degree Examination, June/July 2015 Operations Research

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Define: i) Feasible solution
- ii) Feasible region
- iii) Optimal solution.

b. A manufacturer produces three models I, II, III of certain product using raw materials A and

B. The following table gives the data for the problem.

Raw material	Requir	ement p	Availability	
	I	II	III	Availability
A	2	3	5	4000
В	4	2	7	6000
Minimum Demand	200	200	150	-
Profit per unit (Rs)	30	20	50	- (

Formulate the problem as a linear program model.

(07 Marks)

c. Using graphical method solve the LPP

Maximize
$$Z = 5x_1 + 4x_2$$

Subject to
$$6x_1 + 4x_2 \le 24$$

$$x_1 + 2x_2 \le 6$$

- $x_1 + x_2 \le 1$

$$x_2 \le 2, x_1, x_2 \ge 0$$

(07 Marks)

a. Define slack variable and surplus variable.

(04 Marks)

b. Solve the following LPP by simplex method:

Maximize
$$z = 6x_1 + 8x_2$$

Subject to
$$2x_1 + 8x_2 \le 16$$

$$2x_1 + 4x_2 \le 8$$

$$x_1, x_2 \ge 0$$

(10 Marks)

- Explain the following:
 - i) A standard form of the LPP
 - ii) Basic solution of a LPP
 - iii) Degeneracy and un bounded solution with respect to simplex methods.

(06 Marks)

Solve the following LPP by Charne's big M method

Maximize
$$z = 20x_1 + 10x_2$$

Subject to :
$$x_1 + x_2 = 150$$

$$x_1 \le 40$$

$$x_2 \ge 20$$

where $x_1, x_2 \ge 0$

(15 Marks)

b. Write procedure to solve LPP of two phase simplex method.

- (05 Marks)
- a. Explain the computational procedure of revised simplex method in standard form. (10 Marks)
 - b. Explain the following:
 - i) Weak duality property iii) Complementary solutions property
- ii) Strong duality property
- iv) Complementary optimal solution property.

(10 Marks)

PART - B

5 a. User dual simplex method and solve the following LPP:

Maximize $z = 3x_1 + x_2$

Subject to: $x_1 + x_2 \ge 1$

 $2x_1 + 3x_2 \ge 2$

(10 Marks)

 $x_1, x_2 \ge 0$ b. Explain the role of duality theory in sensitivity analysis.

(05 Marks)

c. Write any five key relationships between the primal and the dual problems.

(05 Marks)

6 a. Find an initial solution to the following transportation problem using VAM

Destination

 D_4 D_1 D_2 D_3 D_5 5 9 O_1 6 O_2 5 6 8 30 Origin Supply 8 9 O_3 6 20 6 7 10 30 15

Demand

(10 Marks)

b. Solve the following assignment problem

Jobs

		J_1	J_2	J_3	J_4	J_5
	M_1	11	17	8	16	20
	M_2	9	7	12	6	15
Machine	M_3	13	16	15	12	16
	M_4	21	24	17	28	26
-0	M_5	14	10	12	11	15

(10 Marks)

- 7 a. Define the following with respect to games
 - i) Pay off
- ii) Zero sum game
- iii) Saddle point

(03 Marks)

b. Solve the following game graphically

Player B

Player A

	B_1	B_2	B_3
A_1	2	6	22
A_2	16	10	24

(07 Marks)

- c. Solve the following game:
- B II III IV 15 35 14 2 25 8 10 2 5 3 40 19 0

(10 Marks)

- 8 a. Write the outline of a basic table search algorithm. Explain it with the help of a minimum spanning tree problem with constraints. (10 Marks)
 - b. Write short notes on: i) simulated annealing
- ii) Genetic algorithms.

(10 Marks)